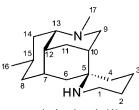
2004 Vol. 6, No. 19 3389-3391

Nankakurine A, a Novel C₁₆N₂-Type Alkaloid from *Lycopodium hamiltonii*


Yusuke Hirasawa, Hiroshi Morita, and Jun'ichi Kobayashi*

Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo 060-0812, Japan

jkobay@pharm.hokudai.ac.jp

Received July 16, 2004

ABSTRACT

nankakurine A (1)

A novel, fused-tetracyclic *Lycopodium* alkaloid, nankakurine A (1), consisting of a cyclohexane ring and a 3-aza-bicyclo[3.3.1]nonane ring connected to a piperidine ring through a spiro carbon, was isolated from the club moss *Lycopodium hamiltonii*. The structure and relative stereochemistry were elucidated on the basis of spectroscopic data.

Lycopodium alkaloids¹ with unique heterocyclic frameworks of C₁₁N, C₁₆N, C₁₆N₂, and C₂₇N₃ types have attracted great interest from biogenetic^{1,2} and biological³ points of view. A common feature in all Lycopodium alkaloids is a polycyclic carbon skeleton with varying levels of oxidation. These unique skeletons have also been challenging targets for total synthesis.⁴ Among them, huperzine A is a highly specific and potent inhibitor of acetylcholinesterase (AChE).³ The

inherent inhibition of AChE has prompted the pursuit of the total synthesis⁵ and SAR⁶ studies of huperzine A. Recently, we isolated new types of alkaloids such as sieboldine A⁷ from *Lycopodium sieboldii*, serratezomine A⁸ from *L. serratum* var. *serratum*, complanadine A⁹ and lyconadin A¹⁰ from *L. complanatum*, senepodine A,¹¹ lyconesidine A,¹² and

⁽¹⁾ For reviews of the *Lycopodium* alkaloids, see: (a) Kobayashi, J.; Morita, H. In *The Alkaloids*; Cordell, G. A., Ed.; Academic Press: New York; Vol. 61, in press. (b) Ayer, W. A.; Trifonov, L. S. In *The Alkaloids*; Cordell, G. A.; Brossi, A., Eds.; Academic Press: New York, 1994; Vol. 45, p 233. (c) Ayer, W. A. *Nat. Prod. Rep.* **1991**, *8*, 455–463. (d) MacLean, D. B. In *The Alkaloids*; Brossi, A., Ed.; Academic Press: New York, 1985; Vol. 26, p 241. (e) MacLean, D. B. In *The Alkaloids*; Manske, R. H. F. Ed.; Academic Press: New York, 1973; Vol. 14, p 348. (f) MacLean, D. B. In *The Alkaloids*; Manske, R. H. F., Ed.; Academic Press: New York, 1968; Vol. 10, p 305.

^{(2) (}a) Hemscheidt, T.; Spenser, I. D. *J. Am. Chem. Soc.* **1996**, *118*, 1799–1800. (b) Hemscheidt, T.; Spenser, I. D. *J. Am. Chem. Soc.* **1993**, *115*, 3020–3021.

⁽³⁾ Liu, J. S.; Zhu, Y. L.; Yu, C. M.; Zhou, Y. Z.; Han, Y. Y.; Wu, F. W.; Qi, B. F. Can. J. Chem. **1986**, 64, 837–839.

^{(4) (}a) Yen, C. F.; Liao, C. C. Angew. Chem., Int. Ed. **2002**, 41, 4090–4093. (b) Cassayre, J.; Gagosz, F.; Zard, S. Z. Angew. Chem., Int. Ed. **2002**, 41, 1783–1785. (c) Sha, C.-K.; Lee, F.-K.; Chang, C.-J. J. Am. Chem. Soc. **1999**, 121, 9875–9876. (d) Williams, J. P.; St. Laurent, D. R.; Friedrich, D.; Pinard, E.; Roden, B. A.; Paquette, L. A. J. Am. Chem. Soc. **1994**, 116, 4689–4696. (e) Hirst, G. C.; Johnson, T. O.; Overman, L. E. J. Am. Chem. Soc. **1993**, 115, 2992–2993 and references therein.

^{(5) (}a) Yamada, F.; Kozikowski, A. P.; Reddy, E. R.; Pang, Y. P.; Miller, J. H.; McKinney, M. J. Am. Chem. Soc. 1991, 113, 4695–4696. (b) Kozikowski, A. P.; Campiani, G.; Aagaard, P.; McKinney, M. J. Chem. Soc., Chem. Commun. 1993, 860–862. (c) Campiani, G.; Sun, L. Q.; Kozikowski, A. P.; Aagaard, P.; Mckinney, M. J. Org. Chem. 1993, 58, 7660–7669. (d) Kaneko, S.; Yoshino, T.; Katoh, T.; Terashima, S. Tetrahedron 1998, 54, 5471–5484. (e) Kaneko, S.; Yoshino, T.; Katoh, T.; Terashima, S. Heterocycles 1997, 46, 27–30. (f) Kaneko, S.; Yoshino, T.; Katoh, T.; Terashima, S. Tetrahedron: Asymmetry 1997, 8, 829–832. (6) (a) Kozikowski, A. P.; Tüeckmantel, W. Acc. Chem. Res. 1999, 32,

^{(6) (}a) Kozikowski, A. P.; Tueckmantel, W. Acc. Chem. Res. 1999, 32, 641–650. (b) Bai, D. L.; Tang, X. C.; He, X. C. Curr. Med. Chem. 2000, 7, 355–374.

⁽⁷⁾ Hirasawa, Y.; Morita, H.; Shiro, M.; Kobayashi, J. *Org. Lett.* **2003**, *5*, 3991–3993.

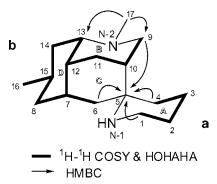
⁽⁸⁾ Morita, H.; Arisaka, M.; Yoshida, N.; Kobayashi, J. *J. Org. Chem.* **2000**, *65*, *624*1–*6245*.

⁽⁹⁾ Kobayashi, J.; Hirasawa, Y.; Yoshida, N.; Morita, H. *Tetrahedron Lett.* **2000**, *41*, 9069–9073.

⁽¹⁰⁾ Kobayashi, J.; Hirasawa, Y.; Yoshida, N.; Morita, H. J. Org. Chem. **2001**, 66, 5901–5904.

^{(11) (}a) Morita, H.; Hirasawa, Y.; Yoshida, N.; Kobayashi, J. *Tetrahedron Lett.* **2001**, *42*, 4199–4201. (b) Hirasawa, Y.; Morita, H.; Kobayashi, J. *Tetrahedron* **2003**, *59*, 3567–3573.

⁽¹²⁾ Hirasawa, Y.; Morita, H.; Kobayashi, J. Tetrahedron 2002, 58, 5483-5488.


Table 1. 1 H and 13 C NMR Data of Nankakurine A (1) in CD₃OD at 300 K

	$\delta_{ m H}$	δ_{C}	HMBC
1	2.82 (2H, t, 5.1)	41.0	
2a	1.58 (1H, m)	26.3	1a
2b	1.53 (1H, m)		
3	1.57 (2H, m)	20.9	1
4	1.66 (2H, m)	34.6	
5		56.1	1a, 4, 6a, 7, 9b, 11a
6a	2.29 (1H, dd, 12.7, 12.7)	40.0	8
6b	1.64 (1H, m)		
7	1.85 (1H, m)	34.5	11
8a	1.49 (1H, m)	41.9	6a, 14b, 16
8b	1.20 (1H, ddd, 12.6, 12.6, 5.0)		
9a	3.00 (1H, ddd, 12.1, 2.4, 2.4)	58.5	11b, 17
9b	2.14 (1H, dd, 12.1, 2.8)		
10	1.81 (1H, m)	37.4	11b
11a	1.83 (1H, m)	32.5	
11b	1.53 (1H, m)		
12	1.53 (1H, m)	36.9	8b, 10, 11b, 14b
13	2.03 (1H, m)	65.1	9b, 11b, 14b, 17
14a	2.02 (1H, m)	40.0	8b, 16
14b	0.89 (1H, ddd, 12.1, 12.1, 2.1)		
15	1.95 (1H, m)	22.0	16, 8a
16	0.85 (3H, d, 6.6)	23.0	•
17	2.12 (3H, s)	43.4	
	• / /		

himeradine A^{13} from L. chinense, and cermizine A^{14} from L. cernuum. During our continuing search for biogenetically interesting intermediates and new alkaloids with a novel skeleton from Lycopodium species, nankakurine A (1), 15 a novel alkaloid with an unprecedented caged system consisting of a cyclohexane ring and a 3-aza-bicyclo[3.3.1]nonane ring connected to a piperidine ring through a spiro carbon was isolated from the club moss L. hamiltonii. In this paper we describe the isolation and structure elucidation of $\mathbf{1}$, which is a member of the $C_{16}N_2$ subclass.

The club moss *L. hamiltonii* was extracted with MeOH, and the extract was partitioned between EtOAc and 3% tartaric acid. Water-soluble materials, which were adjusted to pH 10 with saturated Na₂CO₃, were extracted with CHCl₃. CHCl₃-soluble materials were subjected to an amino silica gel column (hexane/EtOAc, $1:0 \rightarrow 0:1$), in which a fraction eluted with hexane/EtOAc (1:1) was purified by a silica gel column (CHCl₃/MeOH, $1:0 \rightarrow 0:1$) to afford nankakurine A (1, 1.6 mg, 0.003% yield) together with a known alkaloid, alopecuridine¹⁶ (2.6 mg, 0.005%).

Nankakurine A {1, $[\alpha]^{21}_D$ +16° (c 0.4, MeOH)} showed the pseudomolecular ion peak at m/z 263 (M + H)⁺ in the FABMS spectrum, and the molecular formula, $C_{17}H_{30}N_2$, was established by HRFABMS [m/z 263.2497, (M + H)⁺, Δ +1.0 mmu]. IR absorptions implied the presence of an amine

Figure 1. Selected two-dimensional NMR correlations for nankakurine A (1).

(3300 cm⁻¹) functionality. Analysis of the ¹H and ¹³C NMR data (Table 1) and the HMQC spectrum of **1** revealed the presence of one sp³ quaternary carbon, five sp³ methines, nine sp³ methylenes, and two methyl groups. Among them, two sp³ methylene ($\delta_{\rm C}$ 41.0; $\delta_{\rm H}$ 2.82; $\delta_{\rm C}$ 58.5; $\delta_{\rm H}$ 2.14 and 3.00), one sp³ methine ($\delta_{\rm C}$ 65.1; $\delta_{\rm H}$ 2.03), and one sp³ quaternary carbon ($\delta_{\rm C}$ 56.1) were ascribed to those bearing a nitrogen atom.

The gross structure of 1 was deduced from extensive analyses of the two-dimensional NMR data, including the ¹H−¹H COSY, HOHAHA, HMQC, and HMBC spectra in CD₃OD (Figure 1). The ¹H-¹H COSY and HOHAHA spectra in CD₃OD revealed connectivities of two partial structures **a** (C-1 \sim C-4) and **b** (C-6 to C-8, C-9 \sim C-16, C-7 to C-12, and C-8 to C-15) as shown in Figure 1. HMBC correlations were observed for H-1 and H-4 to C-5 (δ_C 56.1), suggesting that C-1 and C-4 were connected to each other through C-5 and a nitrogen atom to form a piperidine ring (ring A). The connectivities of C-17 to C-9 and C-13 through a nitrogen atom were implied by HMBC correlations for H_{3} -17 to C-9 (δ_{C} 58.5) and C-13 (δ_{C} 65.1). HMBC crosspeaks for H-9b and H-6a to C-5 ($\delta_{\rm C}$ 56.1) indicated that a 3-aza-bicyclo[3.3.1]nonane ring (rings B and C) was connected to a piperidine ring (ring A) through a spiro carbon (C-5). ¹H-¹H correlations observed in the ¹H-¹H COSY and HOHAHA spectra indicated that a cyclohexane ring (ring D) with a methyl at C-15 was connected to the 3-aza-bicyclo-[3.3.1]nonane ring at C-7, C-12, and C-13.

Thus, the gross structure of nankakurine A was elucidated to be **1** possessing an unprecedented caged skeleton consisting of a cyclohexane ring (C-7 \sim C-8 and C-12 \sim C-15) with a methyl group at C-15 and a 3-aza-bicyclo[3.3.1]-nonane ring (C-5 \sim C-7, C-9 \sim C-13, and N-2) with a *N*-methyl group (C-17) connected to a piperidine ring (N-1 and C-1 \sim C-5) through a spiro carbon at C-5.

The relative stereochemistry of **1** was elucidated by NOESY correlations and ${}^3J_{\rm H-H}$ couplings as depicted in the computer-generated three-dimensional drawing (Figure 2). Conformations of the piperidine ring (N-1, C-1 \sim C-5), the bicyclo[3.3.1]nonane ring (C-5 \sim C-7, C-9 \sim C-13, and N-2), and the cyclohexane ring (C-7, C-8, and C-12 \sim C-15), in which all of the six-membered rings took chair forms,

3390 Org. Lett., Vol. 6, No. 19, 2004

⁽¹³⁾ Morita, H.; Hirasawa, Y.; Kobayashi, J. J. Org. Chem. **2003**, 68, 4563–4566.

⁽¹⁴⁾ Morita, H.; Hirasawa, Y.; Shinzato, T.; Kobayashi, J. *Tetrahedron* **2004**, *60*, 7015–7023.

⁽¹⁵⁾ Nankakurine A (1): colorless solid; $[\alpha]^{21}_{\rm D}$ +16° (*c* 0.4, MeOH); IR (neat) $\nu_{\rm max}$ 3300, 2920, 2765, 1450, 1340, 1270, 1110, and 1050 cm⁻¹; ¹H and ¹³C NMR data (Table 1); FABMS m/z 263 (M + H)⁺; HRFABMS m/z 263.2497 (M + H; calcd for C₁₇H₃₁N₂, 263.2487).

⁽¹⁶⁾ Ayer, W. A.; Altenkirk, B.; Fukazawa, Y. Tetrahedron 1974, 30, 4213–4214.

Scheme 1. Plausible Biogenetic Pathway for Nankakurine A (1)

were deduced from NOESY correlations as shown in Figure 2. Small 3J coupling constants between H-12 and H-13 and between H-12 and H-7 indicated that the cyclohexane ring (ring D) was cis-fused with the 3-aza-bicyclo[3.3.1]nonane system (rings B and C). The NOESY correlation of H-15 to H-6a led to assignment of the stereochemistry at C-15 as shown in Figure 2. Stereochemistry of the spiro carbon at C-5 was elucidated by the NOESY correlations of H-1b and H-11a, and H-10. Thus, the relative stereochemistry of 1 was assigned as shown in Figure 2.

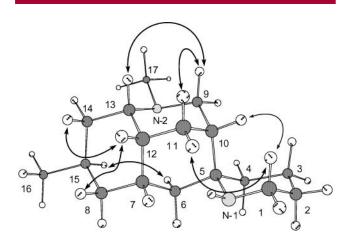


Figure 2. Selected NOESY correlations and relative stereochemistry for nankakurine A (1).

A plausible biogenetic pathway for nankakurine A (1) is proposed in Scheme 1. Nankakurine A (1) might be generated from a piperideine unit and a decahydroquinoline unit derived from an intermediate A via intermediates B and C. This path is close to part of the biogenesis for lucidine B¹⁷ and oxolucidine B¹⁸ proposed by Ayer et al., and the skeleton of 1 corresponds to a part of spirolucidine.¹⁸ On the other hand, an alternative pathway for 1 through a phlegmarane skeleton (D), followed by the bond formation between C-5 and C-10 is also possible.

Nankakurine A (1) exhibited cytotoxicity against human epidermoid carcinoma KB cells (IC₅₀, 3.1 μ g/mL) in vitro.

Acknowledgment. The authors thank Mrs. S. Oka and Miss M. Kiuchi, Center for Instrumental Analysis, Hokkaido University, for measurements of FABMS. This work was partly supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science, and Technology of Japan.

Supporting Information Available: One- and two-dimensional NMR spectra for compound **1**. This material is available free of charge via the Internet at http://pubs.acs.org.

OL048621A

Org. Lett., Vol. 6, No. 19, 2004

⁽¹⁷⁾ Ayer, W. A.; Browne, L. M.; Nakahara, Y.; Tori, M. Can. J. Chem. **1979**, *57*, 1105–1107.

⁽¹⁸⁾ Ayer, W. A.; Ball, L. F.; Browne, L. M.; Tori, M.; Delbaere, L. T. J.; Silverberg, A. Can. J. Chem. 1984, 62, 298–300.